

Manufacturing Engineer / 生産技術

Job Information

Hiring Company

株式会社Synspective

Job ID

1346755

Division

Satellite System Development Department

Job Type

Permanent Full-time

Location

Ibaraki Prefecture

Salary

5.5 million yen ~ Negotiable, based on experience

Refreshed

April 25th, 2024 05:00

General Requirements

Minimum Experience Level

Over 3 years

Career Level

Mid Career

Minimum English Level

Daily Conversation

Minimum Japanese Level

Business Level

Minimum Education Level

Bachelor's Degree

Visa Status

Permission to work in Japan required

Job Description

Satellite System Development Departmentは、弊社独自の小型SAR(合成開口レーダ)衛星である「StriX」シリーズの設計、製造、運用を行っています。チームは従来の宇宙産業や拡大する小型衛星業界、また多数基生産に資する製造業からの経験豊富なメンバー、アドバイザーで構成されています。「人工衛星の開発」は、これまで官需中心で1基単位の生産しか行われていませんでしたが、弊社は衛星サイズを従来の1/10に小型化することでスピーディーな生産体制を実現し、2023年までに6基の衛星打ち上げを予定しています。

StriX衛星の多数基生産に向け、品質・コスト・スピードを重視しながら、効率的な生産体制を構築していただきます。また、ものづくり現場全体を見渡して課題を見つけ解決策を企画・実行し、生産・製造工程の改善に取り組みます。

■具体的には

- ・生産工程の設計
- ・生産工程の改善(省力化、効率化の推進)
- ・製造・組立作業の標準化(工法・作業手順の整備、作業指示書作成など)
- ・不具合発生時に、各専門チームと連携し、原因の特定と改善策の立案
- ·組立治具手配 · 管理
- ・生産設備の企画・導入・評価・管理・不具合対応

・社内の衛星開発における各専門チーム、外部パートナー、サブライヤーとの調整・交渉 など

■什事の魅力

- ・生産工程を自ら作り上げ、量産する生産体制を築くことができ、工業化・産業化をしていくフェーズを味わえます。
- ・世界的に民間企業による宇宙ビジネスのイノベーションが活発化している中で、New Space(ニュースペース)のトップランナーになる一躍を担えます。
- ・フラットな組織なので、アイデアを積極的に発信できる環境です。
- ・小型衛星の設計・開発・組立・打上まで一貫して行なっているため、さまざまな分野の技術に触れることができます。

Required Skills

必須要件

- 筑波(茨城県) 勤務できる方、勤務地:つくば駅から車またはバスで10分
- 生産技術経験者で以下、いずれかのご経験をお持ちの方
 - -生産工程の設計、または、プロセス開発経験
 - -製造・組立工程の工程構築、または、工程整備・改善経験
 - -生産ライン立上げ経験
- 日常会話レベルの英語、ビジネスレベルの日本語

希望要件

- 製造業での組立工程の生産技術経験
- 人工衛星の生産技術経験
- 3D CADの操作経験
- 宇宙環境試験の経験
- 治具設計の経験
- サプライヤーとの折衝経験

処遇 福利厚生 他:

- 福利厚生: 通勤交通費, 社会保険完備, 健康診断 (年1回)
- 服装自由, フレックス制度, ポジションによっては、リモートワーク可
- 副業可
- 敷地内全面禁煙(屋外または屋内喫煙可能場所あり)

Company Description

誰もが手にできる衛星データでの新たな視点

最先端のテクノロジーと分析、そして直感的にわかりやすいUI/UXで、 衛星データをビジネスにご活用いただけます。

Mission: Synthetic Data for Perspective

Vision: Efficient, accountable and resilient world

私たちの提供するサービス

私たちSynspectiveでは、お客さまの事業に最も適した形は何かを探り、衛星データとお客さまの持つデータの組み合わせを行い、シナジーやメリットが見込める衛星データソリューションを提供・共同開発しています。 Synspectiveでは、サブスクリプション型サービスとしてウェブ上でご提供する"Solutions(ソリューション)"、 β 版プロダクトをご利用いただく" β Solutions(ベータ・ソリューション)"をご用意しています。

Solution lineup

Land displacement monitoring

衛星データを用いて広域の地盤変動を解析し、その結果を提供するソリューションサービスです。当社独自のInSAR*解析技術により、広域な地表面の変動量をmm単位で検出し時系列で表示します。
*InSAR - Interferometric SAR(干渉SAR)の略。高精度で土地の変位を検出するSARデータ特有の処理技術の一つ。

β Solution lineup

· Facilities monitoring

施設における稼働状況の異常検知を行うモニタリングサービスです。いくつかのタイプの衛星データを組み合わせ、選択された施設の活動、もしくは異常についてモニタリングを行います。

· Instant flood damage analysis

災害リスク軽減のための水域検出サービスです。光学衛星では撮影できない曇りや雨天下でも、SAR衛星では地上の状況把握が可能です。

· Solar potential area mapping

太陽光発電、屋上太陽光発電に適した場所を見つけることができるサービスです。

Synspectiveの開発する小型SAR衛星『StriX (ストリクス)』

私たちのSAR衛星は、政府が主導する革新的研究開発推進プログラム「ImPACT」*1の成果を応用した独自の小型SAR衛星です。

SARとは"Synthetic Aperture Radar"の略語で、日本語では「合成開口レーダー」と呼ばれる技術です。SAR衛星の特徴は、電波の一種であるマイクロ波を使って地表面を観測することです。

地球上の多くは、通常の地球観測衛星に搭載されているカメラでは撮像できない、雲で覆われている領域だったり、太陽光が当たらない夜間だったりします。しかし、マイクロ波は波長が長く、雲を透過するため、雲の下にある地表面も観測することができます。また自ら発した電波の反射を観測するため、日中・夜間によらず観測可能です。つまり、地表面を「いつでも、どこでも」観測する能力を有します。

私たちの小型SAR衛星『StriX(ストリクス)』の重量は従来の大型SAR衛星の約1/10である100kg級で、長さ5メートルの SARアンテナが打ち上げ時には格納されており、軌道上で展開します。地上分解能は1~3mで観測幅は10~30km、単偏波 (VV) データを取得します。観測モードは、ストリップマップモードとスライディングスポットライトモードの二つがあります。

コスト面においては、開発と打ち上げ費用を合わせ、従来の大型SAR衛星と比較して約1/20を実現しています。

従来の大型SAR衛星と同等に近い性能をもったまま、小型・軽量による低価格化をはかることで多数基生産が可能となります。この小型SAR衛星「StriX」を継続的に軌道上に打ち上げ、広範囲、高頻度の地表面観測を可能にするコンステレーション(衛星群)を構築・運用します。

*1 ImPACTとは・・・日本政府が主導した、科学技術イノベーションの創出を目指し、ハイリスク・ハイインパクトな研究 開発を推進することを目的として創設されたプログラム。

• データ・ソリューション提供のための衛星開発

私たちSynspectiveでは、衛星を開発しデータを提供するだけではなく、その後の社会実装のため、衛星開発チームとデータソリューションチームが単一の組織に属しています。

衛星開発チームは、従来の宇宙産業、拡大する小型衛星業界、多数基生産に資する製造業からの経験豊富なメンバー、アドバイザーを揃えています。一方でクライアントと対峙するソリューションチームも機械学習によるデータ解析技術やリモートセンシング技術を持つ経験豊富なメンバーが所属しています。チームを横断し日々議論することで、業種や分野ごとに異なるお客様のニーズを反映させた衛星設計、開発を短期に実現します。

• 社会のニーズに応える、グローバル観測システム

Synspectiveの描く未来の衛星コンステレーションでは、半日ごとに世界の経済活動の変化を検知することや、3時間以内に災害の被害状況を把握することを実現します。

第1世代の衛星は、2020年と2021年に打ち上げられる2つの実証衛星『StriX- α (ストリクス・アルファ)』と『StriX- β (ストリクス・ベータ)』です。

第2世代では、商用データ収集に使用する4基の衛星の打ち上げを予定しています。第1世代衛星の経験から得られた新たな情報やユーザーニーズをより反映させ、量産化に対応します。第1世代と合わせ合計 6 基のコンステレーションによりアジアの主要都市の日次ベースでの観測を実現します。

第3世代の衛星は、第2世代を更に進化させ、30基に向けた生産体制を実現し、世界の大都市の日次ベースでの観測を達成します。